

INTRODUCTION

Importance of Nitrogen and Phosphorus: Increasing agricultural demand supplemented by

- use of chemical fertilizers and animal₁
- Delivers excess nitrogen and phosphorus to the soil needed for plant growth
- Nitrogen₂:
- Constituent in the formation of chlorophyll
- Amino acids used to create proteins for growth
- Needed for cellular function, ATP production
- Nucleic acids formation and plant germination
- Phosphate_{1 3}:
- Energy transformations of ATP, cellular function
- Protein synthesis, strengthen stalk and facilitate root growth

 Improves disease resistance and crop quality Various Forms of Nitrogen and Phosphorus

- Exist naturally and artificially in soil
- Nitrogen:
 - Exists naturally in three general forms
 - Organic nitrogen compounds, ammonium ions, and nitrate
 - Nitrates are most readily available to plants and least resistant to runoff
 - Soluble form
- Phosphorus:
- Exists in both organic and inorganic forms
- The soluble forms of both organic and inorganic phosphorus are susceptible to runoff

Fungal Absorption of Nitrogen and Phosphorus:

- Mushroom have been seen to mobilize different forms of inorganic and organic phosphate
- Ectomycorrhizal genera is most effective for phosphate absorption
- Pleurotus ostreatus had the highest rate of nitrogen absorption

Experiment Background

- How does presence of mushrooms affect nitrate and phosphate absorption from runoff
- How does rainfall intensity affect the runoff concentrations of nitrates and phosphates

EFFECT OF MUSHROOM GROWTH ON RUNOFF OF **NITRATES AND PHOSPHATES RICHARD TANNER DETESTA** ENVIRONMENTAL SCIENCE DEPARTMENT

METHODS

Experimental Design:

- Independent variables
- Spiked Concentrations of nitrate and phosphate in experimental flow
- 1, 2.5, 5, 7.5, and 10 parts per million
- Presence of *Pleurotus ostreatus* within soil sets
- Simulated rainfall intensity
 - Low Flow or High Flow
 - 160mL per 15 minutes for an hour
- 450mL per 15 minutes for an hour • Dependent variables:
- Concentration of nitrate and phosphate in runoff Growing Phase:
- Substrate jar inoculation Sterilization
- Monitored growth in controlled environment
- 78 degrees Fahrenheit; above 95% humidity
- Dunking to rehydrate the fungal cakes

Sample Collection:

- Control set soil with no mushrooms
- Experimental set soil with mushrooms
- Both sets of soil were treated with each spiked concentration at both flow rates
- 450mL of 160mL added for every 15 minutes for a total of 1 hour
- After the soil sets were treated, 3 runoff sample replicates taken, filtered using a 250 micrometer

Phosphates

Experiment Low Flow: Mushrooms vs. Control High Flow: Mushrooms vs. Contro Mushrooms: Low Flow vs. High Flow Control: Low Flow vs. High Flow Percent Runoff: High Flow Percent Runoff: Low Flow

• Nitrate data was very inconsistent with very high relative standard deviations • This correlates to how nitrate reacts within soil

• With a 95% confidence interval This was the only scenario that showed a statistical difference with the control

doi:10.2134/jeq1998.00472425002700020002x. vol. 163, no. 4, 1995, pp. 254–258., doi:10.1007/s002030050201. Gregory, Stanley V., et al. "An Ecosystem Perspective of Riparian Zones." BioScience, vol. 41, no. 8, 1991, pp. 540–551., doi:10.2307/1311607. Marco-Urrea, Ernest, et al. "Potential of Non-Ligninolytic Fungi in Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbons." New Biotechnology, vol. 32, no. 6, 5 Jan. 2015, pp. 620–628., doi:10.1016/j.nbt.2015.01.005. 1-3, 2009, pp. 1–7., doi:10.1007/s10533-009-9387-8.

RESULTS

Phosphate Data

No Mushrooms: High Flow vs. Low Flow

Nitrate Data

T-test Results

	Nitrates	
P-value	Experiment	P-value
0.25	Low Flow: Mushrooms vs. Control	0.32
0.03	High Flow: Mushrooms vs. Control	0.08
0.56	Mushrooms: Low Flow vs. High Flow	0.53
0.34	Control: Low Flow vs. High Flow	0.33
0.09	Percent Runoff: High Flow	0.77
0.47	Percent Runoff: Low Flow	0.16
	P-value 0.25 0.033 0.566 0.344 0.09 0.47	NitratesP-valueExperiment0.25Low Flow: Mushrooms vs. Control0.03High Flow: Mushrooms vs. Control0.56Mushrooms: Low Flow vs. High Flow0.34Control: Low Flow vs. High Flow0.09Percent Runoff: High Flow0.47Percent Runoff: Low Flow

CONCLUSION

- There are no graphical trends represented in the data
 - Experimental soil sets seem to have lower
 - concentrations for phosphate at low flow
- Phosphate runoff at high flow showed a statistically lower
- concentration in runoff when compared to control

BIBLIOGRAPHY

Daniel, T. C., et al. "Agricultural Phosphorus and Eutrophication: A Symposium Overview." Journal of Environmental Quality, vol. 27, no. 2, 1998, pp. 251–257.

- Dass, S. B., et al. "Extracellular Proteases Produced by the Wood-Degrading Fungus Phanerochaete Chrysosporium under Ligninolytic and Non-Ligninolytic Conditions." Archives of Microbiology,
- Hill, Alan R. "Nitrate Removal in Stream Riparian Zones." Journal of Environmental Quality, vol. 25, no. 4, 1996, pp. 743–755., doi:10.2134/jeq1996.00472425002500040014x.
- Smolders, Alfons J. P., et al. "How Nitrate Leaching from Agricultural Lands Provokes Phosphate Eutrophication in Groundwater Fed Wetlands: the Sulphur Bridge." Biogeochemistry, vol. 98, no.